Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10574
J Biol Chem 2000 Nov 10;27545:35185-91. doi: 10.1074/jbc.M002727200.
Show Gene links Show Anatomy links

The metabotropic GABAB receptor directly interacts with the activating transcription factor 4.

Nehring RB , Horikawa HP , El Far O , Kneussel M , Brandstätter JH , Stamm S , Wischmeyer E , Betz H , Karschin A .


Abstract
G protein-coupled receptors regulate gene expression by cellular signaling cascades that target transcription factors and their recognition by specific DNA sequences. In the central nervous system, heteromeric metabotropic gamma-aminobutyric acid type B (GABA(B)) receptors through adenylyl cyclase regulate cAMP levels, which may control transcription factor binding to the cAMP response element. Using yeast-two hybrid screens of rat brain libraries, we now demonstrate that GABA(B) receptors are engaged in a direct and specific interaction with the activating transcription factor 4 (ATF-4), a member of the cAMP response element-binding protein /ATF family. As confirmed by pull-down assays, ATF-4 associates via its conserved basic leucine zipper domain with the C termini of both GABA(B) receptor (GABA(B)R) 1 and GABA(B)R2 at a site which serves to assemble these receptor subunits in heterodimeric complexes. Confocal fluorescence microscopy shows that GABA(B)R and ATF-4 are strongly coclustered in the soma and at the dendritic membrane surface of both cultured hippocampal neurons as well as retinal amacrine cells in vivo. In oocyte coexpression assays short term signaling of GABA(B)Rs via G proteins was only marginally affected by the presence of the transcription factor, but ATF-4 was moderately stimulated in response to receptor activation in in vivo reporter assays. Thus, inhibitory metabotropic GABA(B)Rs may regulate activity-dependent gene expression via a direct interaction with ATF-4.

PubMed ID: 10924501
Article link: J Biol Chem


Species referenced: Xenopus laevis
Genes referenced: atf4 camp gabbr2