XB-ART-12881
Am J Physiol
1999 Jun 01;2766:C1325-37. doi: 10.1152/ajpcell.1999.276.6.C1325.
Show Gene links
Show Anatomy links
Alternate splicing in human Na+-MI cotransporter gene yields differentially regulated transport isoforms.
Abstract
myo-Inositol is a ubiquitous intracellular organic osmolyte and phosphoinositide precursor maintained at millimolar intracellular concentrations through the action of membrane-associated Na+-myo-inositol cotransporters (SMIT). Functional cloning and expression of a canine SMIT cDNA, which conferred SMIT activity in Xenopus oocytes, predicted a 718-amino acid peptide homologous to the Na+-glucose cotransporter with a potential protein kinase A phosphorylation site and multiple protein kinase C phosphorylation sites. A consistent approximately 1.0- to 13.5-kb array of transcripts hybridizing with this cDNA are osmotically induced in a variety of mammalian cells and species, yet SMIT activity appears to vary among different tissues and species. An open reading frame on human chromosome 21 (SLC5A3) homologous to that of the canine cDNA (96.5%) is thought to comprise an intronless human SMIT gene. Recently, this laboratory ascribed multiply sized, osmotically induced SMIT transcripts in human retinal pigment epithelial cells to the alternate utilization of several 3'-untranslated SMIT exons. This article describes an alternate splice donor site within the coding region that extends the open reading frame into the otherwise untranslated 3' exons, potentially generating novel SMIT isoforms. In these isoforms, the last putative transmembrane domain is replaced with intracellular carboxy termini containing a novel potential protein kinase A phosphorylation site and multiple protein kinase C phosphorylation sites, and this could explain the heterogeneity in the regulation and structure of the SMIT.
PubMed ID: 10362595
Article link: Am J Physiol
Grant support:
Species referenced: Xenopus
Genes referenced: slc5a3