Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1471
J Biol Chem 2005 Oct 21;28042:35448-57. doi: 10.1074/jbc.M503811200.
Show Gene links Show Anatomy links

Ultraviolet B radiation generates platelet-activating factor-like phospholipids underlying cutaneous damage.

Marathe GK , Johnson C , Billings SD , Southall MD , Pei Y , Spandau D , Murphy RC , Zimmerman GA , McIntyre TM , Travers JB .


Abstract
Ultraviolet B light (UVB) causes cutaneous inflammation and cell death, but the agents responsible are not defined. These studies examined the role of the platelet-activating factor (PAF) signaling system in UVB-mediated effects. Expression of the PAF receptor in the PAF receptor-negative epidermoid cell line KB augmented apoptosis in response to UVB irradiation. Overexpression of the PAF receptor in primary human keratinocytes also enhanced UVB-mediated apoptosis in vitro, and it enhanced apoptosis in an in vivo model of human keratinocytes grafted onto severe combined immune-deficient (SCID) mice. To define the mechanism by which UVB activates the PAF receptor, we used mass spectrometry to demonstrate significant amounts of the C4 PAF analogs 1-alkyl-2-(butanoyl and butenoyl)-sn-glycero-3-phosphocholine, as well as native PAF in an epidermal cell line after UVB irradiation. Supplementing the cells with the precursor phospholipid 1-hexadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine (HAPC) increased the amount of C4 PAF analogs recovered after UVB exposure. We irradiated HAPC directly and found, even in the absence of a photosensitizer, fragmentation to C4-PAF receptor ligands. We conclude UVB photo-oxidizes cellular phospholipids, creating PAF analogs that stimulate the PAF receptor to induce further PAF synthesis and apoptosis. PAF signaling may participate in the cutaneous inflammation that occurs during photo-aggravated dermatoses.

PubMed ID: 16115894
Article link: J Biol Chem
Grant support: [+]

Species referenced: Xenopus
Genes referenced: pafah1b2