Xenbase is undergoing scheduled maintenance Wednesday, June 14 and Thursday, June 15, 2023. Xenbase will be unavailable on those days.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Development 1996 Feb 01;1222:473-80.
Show Gene links Show Anatomy links

Interactions between rhombomeres modulate Krox-20 and follistatin expression in the chick embryo hindbrain.

Graham A , Lumsden A .

The rhombomeres of the embryonic hindbrain display compartment properties, including cell lineage restriction, genetic definition and modular anatomical phenotype. Consistent with the idea that rhombomeres are autonomous developmental units, previous studies have shown that certain aspects of rhombomere phenotype are determined early, at the time of rhombomere formation. By contrast, the apoptotic depletion of neural crest from rhombomeres 3 and 5 is due to an interaction with their neighbouring rhombomeres, involving the signalling molecule Bmp4. In this paper, we have examined whether inter-rhombomere interactions control further aspects of rhombomere phenotype. We find that the expression of Krox-20 and the repression of follistatin in r3 is dependent upon neighbour interaction, whereas these genes are expressed autonomously in r5. We further demonstrate that modulation of Krox-20 and follistatin expression is not dependent on Bmp4, indicating the existence of multiple pathways of interaction between adjacent rhombomeres. We also show that, although some phenotypic aspects of r3 are controlled by neighbour interactions, the axial identity of the segment is intrinsically determined.

PubMed ID: 8625798
Article link:

Species referenced: Xenopus
Genes referenced: bmp4 egr2 fst