Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Comp Biochem Physiol B Biochem Mol Biol 1995 Oct 01;1122:345-54.
Show Gene links Show Anatomy links

Conservation of functionally important epitopes on myelin associated glycoprotein (MAG).

Tropak MB , Jansz GF , Abramow-Newerly W , Roder JC .

Phylogenetic conservation of protein domains often points to functionally important regions. As a step toward mapping these sites on myelin associated glycoprotein (MAG) we have determined the species distribution of epitopes recognized by a panel of anti-MAG antibodies (Ab). Monoclonal antibodies (mAb) B11F7, GenS3 and 28 recognized MAG only in mammalian species. However, the mAb 513 which inhibits MAG binding recognized a conformational epitope in a wider distribution of species including, human (Homo sapiens), bovine (Bos taurus), rat (Rattus norvegicus), chicken (Gallus gallus), quail (Coturnix coturnix japonica), lizard (Iguana iguana), snake (Thamnophis sirtalis), frog (Xenopus laevis) and turtle (all tetrapods) but not in goldfish (Crassius aurata) (a teleost). However, only MAG from mammals was shown to bind rat dorsal ganglion neurons (DRGs) suggesting that structures additional to those recognized by mAb 513 must be involved in function. Antibody 28, on the other hand, recognized only MAG species which bound to neurons, suggesting that this epitope, in comparison with mAb 513, more closely represented the functionally important region of MAG. Observed species differences in glycosylation of MAG may be functionally significant. A newly developed polyclonal Ab against MAG recognized the protein in tetrapods and teleosts, but not chondricthyes. The results show that MAG is present in a wide spectrum of species.

PubMed ID: 7584863

Species referenced: Xenopus laevis
Genes referenced: mag
Antibodies: Mag Ab1