Xenbase is undergoing scheduled maintenance Wednesday, June 14 and Thursday, June 15, 2023. Xenbase will be unavailable on those days.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Biol Chem 1985 Aug 15;26017:9759-74.
Show Gene links Show Anatomy links

The complete nucleotide sequence of the Xenopus laevis mitochondrial genome.

Roe BA , Ma DP , Wilson RK , Wong JF .

The complete sequence of the 17,553-nucleotide Xenopus laevis mitochondrial genome has been determined. A comparison of this amphibian mitochondrial genomic sequence with those of the mammalian mitochondrial genomes reveals a similar gene order and compact genomic organization. The encoded genes for 22 tRNAs, two ribosomal RNAs, and 13 proteins (COI, COII, COIII, ATPase 6, cytochrome b, and eight additional unidentified reading frames) in the amphibian mitochondria are highly homologous to their mammalian counterparts. Although the amphibian mitochondrial genome contains a significantly larger displacement loop region than the mammalian mitochondrial genomes, there are several regions of sequence homology near the putative sites for heavy and light strand transcription initiation and heavy strand replication. The unique mitochondrial genetic code observed in the mammalian mitochondrial systems is similar to that of the X. laevis mitochondrial genome because of the presence of only 22 encoded tRNAs and the high degree of homology between the predicted protein sequences. However, the amphibian system exclusively utilizes AUG as the start codon in all 13 open reading frames and shows a preference for codons ending in U rather than ending in C. In addition, the X. laevis mitochondrial genome employs the encoded AGA stop codon once and the UAA stop codon three times and requires polyadenylation to provide the nine other UAA stop codons. These observations suggest that the mechanisms of replication, transcription, processing, and translation in mitochondria are highly conserved throughout higher vertebrates.

PubMed ID: 4019494
Article link: J Biol Chem
Grant support: [+]

Species referenced: Xenopus laevis
Genes referenced: aga mhc1-uaa mt-co2 mt-co3 mt-cyb