Xenbase is undergoing scheduled maintenance Wednesday, June 14 and Thursday, June 15, 2023. Xenbase will be unavailable on those days.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Biol Chem 2007 Mar 09;28210:7472-81. doi: 10.1074/jbc.M607589200.
Show Gene links Show Anatomy links

SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis.

Paul BD , Buchholz DR , Fu L , Shi YB .

Gene activation by the thyroid hormone (T3) receptor (TR) involves the recruitment of specific coactivator complexes to T3-responsive promoters. A large number of coactivators for TR have been isolated and characterized in vitro. However, their roles and functions in vivo during development have remained largely unknown. We have utilized metamorphosis in Xenopus laevis to study the role of these coactivators during post-embryonic development. Metamorphosis is totally dependent on the thyroid hormone, and TR mediates a vast majority, if not all, of the developmental effects of the hormone. We have previously shown that TR recruits the coactivator SRC3 (steroid receptor coactivator-3) and that coactivator recruitment is essential for metamorphosis. To determine whether SRCs are indeed required, we have analyzed the in vivo role of the histone acetyltransferase p300/CREB-binding protein (CBP), which was reported to be a component of the SRC.coactivator complexes. Chromatin immunoprecipitation revealed that p300 is recruited to T3-responsive promoters, implicating a role of p300 in TR function. Further, transgenic tadpoles overexpressing a dominant negative form of p300, F-dnp300, containing only the SRC-interacting domain, displayed arrested or delayed metamorphosis. Molecular analyses of the transgenic F-dnp300 animals showed that F-dnp300 was recruited by TR (displacing endogenous p300) and inhibited the expression of T3-responsive genes. Our results thus suggest that p300 and/or its related CBP is an essential component of the TR-signaling pathway in vivo and support the notion that p300/CBP and SRC proteins are part of the same coactivator complex in vivo during post-embryonic development.

PubMed ID: 17218308
Article link: J Biol Chem
Grant support: [+]

Species referenced: Xenopus laevis
Genes referenced: creb1 crebbp ep300 ncoa3