Xenbase is undergoing scheduled maintenance Wednesday, June 14 and Thursday, June 15, 2023. Xenbase will be unavailable on those days.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Biol 2003 Dec 15;2642:456-66. doi: 10.1016/j.ydbio.2003.09.008.
Show Gene links Show Anatomy links

Interplay between FGF, one-eyed pinhead, and T-box transcription factors during zebrafish posterior development.

Griffin KJ , Kimelman D .

The zebrafish T-box transcription factors spadetail (spt) and the brachyury ortholog no tail (ntl) are together essential for posterior mesoderm formation. In addition to being functionally redundant, spt and ntl also genetically interact with zygotic mutant alleles of one-eyed pinhead (Zoep), leading to synergistic mesodermal defects. Here we have used genetic and pharmacological assays to address the mechanism of these interactions. We show that Zoep and ntl are together required upstream of spt expression, accounting for the severity of the mesodermal defects in Zoep;ntl embryos. Since Xenopus brachyury is proposed to regulate fgf expression, and FGF signaling is required for spt expression, we analyzed the involvement of the FGF signaling pathway in these genetic interactions. Using a specific inhibitor of FGFR activity to indirectly assay the strength of FGF signaling in individual embryos, we found that spt and ntl mutant embryos were both hypersensitive to the FGFR inhibitor. This hypersensitivity is consistent with the possibility that Spt and Ntl function upstream of FGF signaling. Furthermore, we show that minor pharmacological or genetic perturbations in FGF signaling are sufficient to dramatically enhance the Zoep mutant phenotype, providing a plausible explanation for why Zoep genetically interacts with spt and ntl. Finally, we show that Zoep and ace/fgf8 function are essential for the formation of all posterior tissues, including spinal cord. Taken together, our data provide strong in vivo support for the regulation of FGF signaling by T-box transcription factors, and the cooperative activity of Oep and FGF signaling during the formation of posterior structures.

PubMed ID: 14651930
Article link: Dev Biol

Species referenced: Xenopus
Genes referenced: agxt pnhd tbxt