Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-44234
J Biol Chem 2011 Aug 19;28633:29207-17. doi: 10.1074/jbc.M111.260364.
Show Gene links Show Anatomy links

Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: mapping agonist binding and channel gating.

Allsopp RC , El Ajouz S , Schmid R , Evans RJ .


Abstract
P2X receptors are ATP-gated cation channels. The x-ray structure of a P2X4 receptor provided a major advance in understanding the molecular basis of receptor properties. However, how agonists are coordinated, the extent of the binding site, and the contribution of the vestibules in the extracellular domain to ionic permeation have not been addressed. We have used cysteine-scanning mutagenesis to determine the contribution of residues Glu(52)-Gly(96) to human P2X1 receptor properties. ATP potency was reduced for the mutants K68C, K70C, and F92C. The efficacy of the partial agonist BzATP was also reduced for several mutants forming the back of the proposed agonist binding site. Molecular docking in silico of both ATP and BzATP provided models of the agonist binding site consistent with these data. Individual cysteine mutants had no effect or slightly increased antagonism by suramin or pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate. Mutants at the entrance to and lining the upper vestibule were unaffected by cysteine-reactive methanethiosulfonate (MTS) reagents, suggesting that it does not contribute to ionic permeation. Mutants that were sensitive to modification by MTS reagents were predominantly found either around the proposed ATP binding pocket or on the strands connecting the binding pocket to the transmembrane region and lining the central vestibule. In particular, ATP sensitivity and currents were increased by a positively charged MTS reagent at the G60C mutant at the interface between the central and extracellular vestibule. This suggests that dilation of the base of the central vestibule contributes to gating of the receptor.

PubMed ID: 21690089
PMC ID: PMC3190727
Article link: J Biol Chem
Grant support: [+]

Species referenced: Xenopus laevis
Genes referenced: grap2 p2rx1 p2rx4


Article Images: [+] show captions
References [+] :
Adriouch, ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site. 2008, Pubmed