Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-49882
Structure 2013 Nov 05;2111:2033-41. doi: 10.1016/j.str.2013.08.029.
Show Gene links Show Anatomy links

Asp44 stabilizes the Trp41 gate of the M2 proton channel of influenza A virus.

Ma C , Fiorin G , Carnevale V , Wang J , Lamb RA , Klein ML , Wu Y , Pinto LH , DeGrado WF .


Abstract
Channel gating and proton conductance of the influenza A virus M2 channel result from complex pH-dependent interactions involving the pore-lining residues His37, Trp41, and Asp44. Protons diffusing from the outside of the virus protonate His37, which opens the Trp41 gate and allows one or more protons to move into the virus interior. The Trp41 gate gives rise to a strong asymmetry in the conductance, favoring rapid proton flux only when the outside is at acid pH. Here, we show that the proton currents recorded for mutants of Asp44, including D44N found in the A/FPV/Rostock/34 strain, lose this asymmetry. Moreover, NMR and MD simulations show that the mutations induce a conformational change similar to that induced by protonation of His37 at low pH, and decrease the structural stability of the hydrophobic seal associated with the Trp41 gate. Thus, Asp44 is able to determine two important properties of the M2 proton channel.

PubMed ID: 24139991
PMC ID: PMC3927992
Article link: Structure
Grant support: [+]


References [+] :
Acharya, Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. 2010, Pubmed, Xenbase