Xenbase is undergoing scheduled maintenance Wednesday, June 14 and Thursday, June 15, 2023. Xenbase will be unavailable on those days.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-57003
FEBS Lett 2019 Mar 01;5936:634-643. doi: 10.1002/1873-3468.13344.
Show Gene links Show Anatomy links

Molecular determinants on extracellular loop domains that dictate interaction between β-arrestin and human APJ receptor.

Ashokan A , Kameswaran M , Aradhyam GK .


Abstract
The human APJ receptor (APJR), activated by apelin isoforms, regulates cardiovascular functions and fluid homeostasis. Understanding its structure-function relationship is crucial for a comprehensive knowledge of signalling aberrations that cause several physiological disorders. Here, we demonstrate the influence of extracellular loop (ECL) domains in the mechanism of β-arrestin-mediated signalling from human APJR: Apelin system. Alanine mutations of evolutionarily conserved residues were characterized using receptor internalization, β-arrestin pull-down, Akt phosphorylation and cell migration assay. C281A and 268 KTL270 -AAA in ECL3 were deficient in all assays, whereas 183 MDYS186 -AAAA mutant in ECL2 showed impaired β-arrestin-mediated signalling but demonstrated Gi -dependent cell migration. Our findings establish that conserved residues in the extracellular domain play a prominent role in modulating receptor interactions with the β-arrestin signalling cascade.

PubMed ID: 30801688
Article link: FEBS Lett
Grant support: [+]

Species referenced: Xenopus laevis
Genes referenced: apln aplnr arrb1