Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Biol Chem 2002 Apr 19;27716:13539-47. doi: 10.1074/jbc.M111717200.
Show Gene links Show Anatomy links

Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK-mediated phosphorylation.

Shi H , Asher C , Chigaev A , Yung Y , Reuveny E , Seger R , Garty H .

Phosphorylation of the epithelial Na(+) channel (ENaC) has been suggested to play a role in its regulation. Here we demonstrate that phosphorylating the carboxyl termini of the beta and gamma subunits facilitates their interactions with the ubiquitin ligase Nedd4 and inhibits channel activity. Three protein kinases, which phosphorylate the carboxyl termini of beta and gammaENaC, have been identified by an in vitro assay. One of these phosphorylates betaThr-613 and gammaThr-623, well-conserved C-tail threonines in the immediate vicinity of the PY motifs. Phosphorylation of gammaThr-623 has also been demonstrated in vivo in channels expressed in Xenopus oocytes, and mutating betaThr-613 and gammaThr-623 into alanine increased the channel activity by 3.5-fold. Effects of the above phosphorylations on interactions between ENaC and Nedd4 have been studied using surface plasmon resonance. Peptides having phospho-threonine at positions beta613 or gamma623 bind the WW domains of Nedd4 two to three times better than the non-phosphorylated analogues, due to higher association rate constants. Using a number of different approaches it was demonstrated that the protein kinase acting on betaThr-613 and gammaThr-623 is the extracellular regulated kinase (ERK). It is suggested that an ERK-mediated phosphorylation of betaThr-613 and gammaThr-623 down-regulates the channel by facilitating its interaction with Nedd4.

PubMed ID: 11805112
Article link: J Biol Chem

Species referenced: Xenopus
Genes referenced: mapk1 nedd4