Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8028
J Biochem 2001 Dec 01;1306:737-40.
Show Gene links Show Anatomy links

Interference with interaction between eukaryotic translation initiation factor 4G and poly(A)-binding protein in Xenopus oocytes leads to inhibition of polyadenylated mRNA translation and oocyte maturation.

Wakiyama M , Honkura N , Miura KI .


Abstract
The interaction between eukaryotic translation initiation factor 4G (eIF4G) and the poly(A)-binding protein (PABP) facilitates translational initiation of polyadenylated mRNAs. It was shown recently that the expression of an eIF4GI mutant defective in PABP binding in Xenopus oocytes reduces polyadenylated mRNA translation and dramatically inhibits progesterone-induced oocyte maturation. These results strongly suggest that the eIF4G-PABP interaction plays a critical role in the translational control of maternal mRNAs during oocyte maturation. In the present work, we employed another strategy to interfere eIF4G-PABP interaction in Xenopus oocytes. The amino-terminal part of eIF4GI containing the PABP-binding site (4GNt-M1) was expressed in Xenopus oocytes. 4GNt-M1 could bind to PABP in oocytes, which suggests that 4GNt-M1 may evict PABP from the endogenous eIF4G. The expression of 4GNt-M1 resulted in reduction of polyadenylated mRNA translation. Furthermore, 4GNt-M1 inhibited progesterone-induced oocyte maturation. In contrast, 4GNt-M2, in which the PABP-binding sequences were mutated to abolish the PABP-binding activity, could not inhibit polyadenylated mRNA translation or oocyte maturation. These results further support the idea that the eIF4G-PABP interaction is critical for translational regulation of maternal mRNAs in oocytes.

PubMed ID: 11726272
Article link: J Biochem


Species referenced: Xenopus
Genes referenced: eif4g1 pabpc1 pabpc4