Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Biol 2001 Aug 15;2362:465-77. doi: 10.1006/dbio.2001.0341.
Show Gene links Show Anatomy links

Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm.

Kumano G , Ezal C , Smith WC .

Patterning of the Xenopus gastrula marginal zone in the axis running equatorially from the Spemann organizer-the so--called "dorsal/ventral axis"--has been extensively studied. It is now evident that patterning in the animal/vegetal axis also needs to be taken into consideration. We have shown that an animal/vegetal pattern is apparent in the marginal zone by midgastrulation in the polarized expression domains of Xenopus brachyury (Xbra) and Xenopus nodal-related factor 2 (Xnr2). In this report, we have followed cells expressing Xbra in the presumptive trunk and tail at the gastrula stage, and find that they fate to presumptive somite, but not to ventrolateral mesoderm of the tailbud embryo. From this, we speculate that the boundary between the Xbra- and Xnr2-expressing cells at gastrula corresponds to a future tissue boundary. In further experiments, we show that the level of mitogen-activated protein kinase (MAPK) activation is polarized along the animal/vegetal axis, with the Xnr2-expressing cells in the vegetal marginal zone having no detectable activated MAPK. We show that inhibition of MAPK activation in Xenopus animal caps results in the conversion of Xnr2 from a dorsal mesoderm inducer to a ventral mesoderm inducer, supporting a role for Xnr2 in induction of ventral mesoderm.

PubMed ID: 11476585
Article link: Dev Biol

Species referenced: Xenopus laevis
Genes referenced: cd3g cd4 mapk1 nodal nodal2 tbxt

Article Images: [+] show captions