Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Images Attributions Wiki Source

Attributions for FM1-43

Summary: Papers (30) Results 1 - 30 of 30 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Single vesicle imaging indicates distinct modes of rapid membrane retrieval during nerve growth., Hines JH, Henle SJ, Carlstrom LP, Abu-Rub M, Henley JR., BMC Biol. January 30, 2012; 10 4.                          

The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels., Breunig E, Kludt E, Czesnik D, Schild D., J Biol Chem. August 12, 2011; 286 (32): 28041-8.        

Investigations of the in vivo requirements of transient receptor potential ion channels using frog and zebrafish model systems., Cornell RA., Adv Exp Med Biol. January 1, 2011; 704 341-57.

Manipulating and imaging the early Xenopus laevis embryo., Danilchik MV., Methods Mol Biol. January 1, 2011; 770 21-54.

Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs., Zivraj KH, Tung YC, Piper M, Gumy L, Fawcett JW, Yeo GS, Holt CE., J Neurosci. November 17, 2010; 30 (46): 15464-78.                

Photodynamic effects of steroid-conjugated fluorophores on GABAA receptors., Shu HJ, Eisenman LN, Wang C, Bandyopadhyaya AK, Krishnan K, Taylor A, Benz AM, Manion B, Evers AS, Covey DF, Zorumski CF, Mennerick S., Mol Pharmacol. October 1, 2009; 76 (4): 754-65.

Responses of hatchling Xenopus tadpoles to water currents: first function of lateral line receptors without cupulae., Roberts A, Feetham B, Pajak M, Teare T., J Exp Biol. April 1, 2009; 212 (Pt 7): 914-21.

Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function., Prober DA, Zimmerman S, Myers BR, McDermott BM, Kim SH, Caron S, Rihel J, Solnica-Krezel L, Julius D, Hudspeth AJ, Schier AF., J Neurosci. October 1, 2008; 28 (40): 10102-10.

Imaging CFTR in its native environment., Schillers H., Pflugers Arch. April 1, 2008; 456 (1): 163-77.

Imaging FM Dyes in Brain Slices., Kay AR., CSH Protoc. October 1, 2007; 2007 pdb.prot4853.

Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells., Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Gründer S., Proc Natl Acad Sci U S A. August 30, 2005; 102 (35): 12572-7.              

Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation., Dawkins R, Keller SL, Sewell WF., J Neurophysiol. May 1, 2005; 93 (5): 2541-51.

Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes., Roorda RD, Hohl TM, Toledo-Crow R, Miesenböck G., J Neurophysiol. July 1, 2004; 92 (1): 609-21.

Optical measurements of presynaptic release in mutant zebrafish lacking postsynaptic receptors., Li W, Ono F, Brehm P., J Neurosci. November 19, 2003; 23 (33): 10467-74.

Activity-dependent remodeling of presynaptic inputs by postsynaptic expression of activated CaMKII., Pratt KG, Watt AJ, Griffith LC, Nelson SB, Turrigiano GG., Neuron. July 17, 2003; 39 (2): 269-81.

Furrow microtubules and localized exocytosis in cleaving Xenopus laevis embryos., Danilchik MV, Bedrick SD, Brown EE, Brown EE, Ray K., J Cell Sci. January 15, 2003; 116 (Pt 2): 273-83.

Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca(2+) channels and transmitter release., Wang CY, Yang F, He X, Chow A, Du J, Russell JT, Lu B., Neuron. October 11, 2001; 32 (1): 99-112.

Plasma membrane protein clusters appear in CFTR-expressing Xenopus laevis oocytes after cAMP stimulation., Schillers H, Danker T, Madeja M, Oberleithner H., J Membr Biol. April 1, 2001; 180 (3): 205-12.

Plasma membrane plasticity of Xenopus laevis oocyte imaged with atomic force microscopy., Schillers H, Danker T, Schnittler HJ, Lang F, Oberleithner H., Cell Physiol Biochem. January 1, 2000; 10 (1-2): 99-107.

Plasma membrane recycling and flow in growing neurites., Zakharenko S, Popov S., Neuroscience. January 1, 2000; 97 (1): 185-94.

Neuromodulation during motor development and behavior., Pflüger HJ., Curr Opin Neurobiol. December 1, 1999; 9 (6): 683-9.

Long-range signaling within growing neurites mediated by neurotrophin-3., Chang S, Popov SV., Proc Natl Acad Sci U S A. March 30, 1999; 96 (7): 4095-100.            

Distribution of neurotransmitter secretion in growing axons., Antonov I, Chang S, Zakharenko S, Popov SV., Neuroscience. March 1, 1999; 90 (3): 975-84.

Neurotransmitter secretion along growing nerve processes: comparison with synaptic vesicle exocytosis., Zakharenko S, Chang S, O'Donoghue M, Popov SV., J Cell Biol. February 8, 1999; 144 (3): 507-18.                          

The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis., Neve RL, Coopersmith R, McPhie DL, Santeufemio C, Pratt KG, Murphy CJ, Lynn SD., J Neurosci. October 1, 1998; 18 (19): 7757-67.

In vitro reconstitution of neurotransmitter release., Dunant Y, Israël M., Neurochem Res. May 1, 1998; 23 (5): 709-18.

Association of cortactin with developing neuromuscular specializations., Peng HB, Xie H, Dai Z., J Neurocytol. October 1, 1997; 26 (10): 637-50.

Internalization of styryl dye FM1-43 in the hair cells of lateral line organs in Xenopus larvae., Nishikawa S, Sasaki F., J Histochem Cytochem. July 1, 1996; 44 (7): 733-41.

Dynamics of synaptic vesicles in cultured spinal cord neurons in relationship to synaptogenesis., Dai Z, Peng HB., Mol Cell Neurosci. June 1, 1996; 7 (6): 443-52.

Effects of cytochalasin treatment on short-term synaptic plasticity at developing neuromuscular junctions in frogs., Wang XH, Zheng JQ, Poo MM., J Physiol. February 15, 1996; 491 ( Pt 1) 187-95.

Page(s): 1