Xenopus Lit image
Larger Image

Figure 2. Depletion of Ectodermin Causes a Shift in Cellular Fates along the Animal-Vegetal Axis (A) Ecto morpholino oligonucleotides specifically knockdown the translation of endogenous Ectodermin protein in whole embryos (control-MO and Ecto-MO, 60 ng/embryo). (B) Animal caps were injected with 60 ng of control-MO or Ecto-MO, explanted at the late blastula stage (stage 9.5), and analyzed by RT-PCR. Note the induction of mesoderm markers in Ecto-depleted cells. (C–J) Molecular characterization of Ecto knockdown by in situ hybridization on whole embryos (midgastrula stage). (C and D) Zygotic VegT, a mesoderm-specific marker, spreads toward the animal pole. (G and H) Mixer expression at the boundary between endoderm and mesoderm (dashed line) is expanded. Arrowheads point to the dorsal lip. A morpholino-insensitive Ecto mRNA (1.5 ng) is biologically active (F and J) and reverses the knockdown phenotypes (E and I). Targeted injection of Ecto-MO in marginal explants confirms ectopic expression of Mixer and Mix.2 in the mesoderm (see Figure S2B).

Image published in: Dupont S et al. (2005)

Copyright © 2005. Image reproduced with permission of the Publisher, Elsevier B. V.

Permanent Image Page
Printer Friendly View

XB-IMG-147664