Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Nat Cell Biol 2010 May 01;125:447-56. doi: 10.1038/ncb2046.
Show Gene links Show Anatomy links

Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control.

Novoa I , Gallego J , Ferreira PG , Mendez R .

Meiotic and early-embryonic cell divisions in vertebrates take place in the absence of transcription and rely on the translational regulation of stored maternal messenger RNAs. Most of these mRNAs are regulated by the cytoplasmic-polyadenylation-element-binding protein (CPEB), which mediates translational activation and repression through cytoplasmic changes in their poly(A) tail length. It was unknown whether translational regulation by cytoplasmic polyadenylation and CPEB can also regulate mRNAs at specific points of mitotic cell-cycle divisions. Here we show that CPEB-mediated post-transcriptional regulation by phase-specific changes in poly(A) tail length is required for cell proliferation and specifically for entry into M phase in mitotically dividing cells. This translational control is mediated by two members of the CPEB family of proteins, CPEB1 and CPEB4. We conclude that regulation of poly(A) tail length is not only required to compensate for the lack of transcription in specialized cell divisions but also acts as a general mechanism to control mitosis.

PubMed ID: 20364142
Article link: Nat Cell Biol

Species referenced: Xenopus
Genes referenced: cpeb1 cpeb4

References [+] :
Barnard, Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. 2004, Pubmed, Xenbase