Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-47793
PLoS One 2013 Oct 08;810:e76854. doi: 10.1371/journal.pone.0076854.
Show Gene links Show Anatomy links

Par6b regulates the dynamics of apicobasal polarity during development of the stratified Xenopus epidermis.

Wang S , Cha SW , Zorn AM , Wylie C .


???displayArticle.abstract???
During early vertebrate development, epithelial cells establish and maintain apicobasal polarity, failure of which can cause developmental defects or cancer metastasis. This process has been mostly studied in simple epithelia that have only one layer of cells, but is poorly understood in stratified epithelia. In this paper we address the role of the polarity protein Partitioning defective-6 homolog beta (Par6b) in the developing stratified epidermis of Xenopus laevis. At the blastula stage, animal blastomeres divide perpendicularly to the apicobasal axis to generate partially polarized superficial cells and non-polarized deep cells. Both cell populations modify their apicobasal polarity during the gastrula stage, before differentiating into the superficial and deep layers of epidermis. Early differentiation of the epidermis is normal in Par6b-depleted embryos; however, epidermal cells dissociate and detach from embryos at the tailbud stage. Par6b-depleted epidermal cells exhibit a significant reduction in basolaterally localized E-cadherin. Examination of the apical marker Crumbs homolog 3 (Crb3) and the basolateral marker Lethal giant larvae 2 (Lgl2) after Par6b depletion reveals that Par6b cell-autonomously regulates the dynamics of apicobasal polarity in both superficial and deep epidermal layers. Par6b is required to maintain the "basolateral" state in both epidermal layers, which explains the reduction of basolateral adhesion complexes and epidermal cells shedding.

???displayArticle.pubmedLink??? 24204686
???displayArticle.pmcLink??? PMC3800127
???displayArticle.link??? PLoS One
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: cadm1 cdh1 cdh3 crb3 ctnnb1 klf6 krt12.4 llgl2 lpar6 pard6b scrib sox2 tuba4b
???displayArticle.antibodies??? Cdh3 Ab1
???displayArticle.morpholinos??? pard6b MO1

Phenotypes: Xla Wt + pard6b MO (Fig 4 A A^1 B B^1) [+]

???attribute.lit??? ???displayArticles.show???
References [+] :
Billett, Fine structural changes in the differentiating epidermis of Xenopus laevis embryos. 1971, Pubmed, Xenbase