|
Figure 1. Histological section of regenerating froglet hindlimb at 12Â days post-amputation through the mid tibia-fibula. The section is cut through the dorsoventral plane such that the tibia (T) and the accompanying flexor and extensor muscle masses are visible (red). A cartilage collar (CC) has formed around the tibia for some distance proximal to the amputation plane that merges distally with a similar collar surrounding the fibula. A fibroblastema (FB) that will form the cartilage spike is present between the merge point of the cartilage collars and the apical epidermal cap (arrow). Yellow line indicates the plane of tissue harvest.
|
|
Figure 2. Pie chart showing the percentage distribution of the 820 proteins among different biological categories and sub-categories.
|
|
Figure 3. Validation of LC/MS/MS. Immunofluorescent antibody staining and mean densitometric sum for β1 integrin, vimentin, and dystroglycan, comparing control, 5 dpa and 12 dpa sections of regenerating froglet hindlimbs. A-D, β1 integrin; E-H, vimentin; I-L, dystroglycan. The 1, 5, 7 and 12 dpa fold changes for each of these proteins were: β1 integrin-1.05, 1.28, 2.18, 2.80; vimentinâ1.07, 1.94, 2.30, 3.15; dystroglycan-1.20, -1.40, -1.49, -2.02. The immunofluorescence and densitometry data thus agree well with the LC/MS/MS proteomic data.
|
|
SFig1A)
Global expression intensity maps for the 10 biological process categories at 1, 5, 7 and 12 dpa. A: Signaling, Cytoskeleton, B: .Intracellular Transport, Transcription, Translation; C: Metabolism, Cell Cycle, ECM; D: Cell Protection, Degradation Red = up regulation; green = down regulation. Level of fold change (FC) is indicated by color intensity. Accession numbers to the right of columns. Intensities for some proteins can be 7â10 times the highest and lowest intensities shown.
|
|
SFig1B)
Global expression intensity maps for the 10 biological process categories at 1, 5, 7 and 12 dpa. A: Signaling, Cytoskeleton, B: .Intracellular Transport, Transcription, Translation; C: Metabolism, Cell Cycle, ECM; D: Cell Protection, Degradation Red = up regulation; green = down regulation. Level of fold change (FC) is indicated by color intensity. Accession numbers to the right of columns. Intensities for some proteins can be 7â10 times the highest and lowest intensities shown.
|
|
SFig1C)
Global expression intensity maps for the 10 biological process categories at 1, 5, 7 and 12 dpa. A: Signaling, Cytoskeleton, B: .Intracellular Transport, Transcription, Translation; C: Metabolism, Cell Cycle, ECM; D: Cell Protection, Degradation Red = up regulation; green = down regulation. Level of fold change (FC) is indicated by color intensity. Accession numbers to the right of columns. Intensities for some proteins can be 7â10 times the highest and lowest intensities shown.
|
|
SFig1D)
Global expression intensity maps for the 10 biological process categories at 1, 5, 7 and 12 dpa. A: Signaling, Cytoskeleton, B: .Intracellular Transport, Transcription, Translation; C: Metabolism, Cell Cycle, ECM; D: Cell Protection, Degradation Red = up regulation; green = down regulation. Level of fold change (FC) is indicated by color intensity. Accession numbers to the right of columns. Intensities for some proteins can be 7â10 times the highest and lowest intensities shown.
|
|
SFig2A)
Circos representation of differences in protein expression during blastema formationin the axolotl (A) and fibroblastema formation in the Xenopus froglet (B). The outermost circle shows shows protein expression according to biological process. Metabolism is the most over-represented biological process category in the Xenopus data, whereas Cytoskeleton is the most over-represented in the axolotl data. There were no proteins identified in the Transport category in the axolotl compared to 70 such proteins in the Xenopus data. The next circle represents proteins expressed with FC =/>2 (blue) or =/ 4 (pink). The Xenopus data contained a far higher number of proteins with these fold differences, especially in the transcription, cytoskeleton and signaling categories compared to the axolotl data. Progressing inward, the next four circles in Xenopus reflect the fold change difference (red = down regulation; green = up regulation; blue = no change) of proteins at 1 dpa, 5 dpa, 7 dpa, and 12 dpa, respectively. In the axolotl, three circles represent FC in protein expression at 1 dpa, 4 dpa, and 7dpa. The innermost circle represents the connections between the interacting proteins within the Xenopus and axolotl data. A comparison of these interactions indicates that the proteomic composition and protein-protein interactions are much more complex during formation of the fibroblastema in Xenopus.
|
|
SFig2B)
Circos representation of differences in protein expression during blastema formationin the axolotl (A) and fibroblastema formation in the Xenopus froglet (B). The outermost circle shows shows protein expression according to biological process. Metabolism is the most over-represented biological process category in the Xenopus data, whereas Cytoskeleton is the most over-represented in the axolotl data. There were no proteins identified in the Transport category in the axolotl compared to 70 such proteins in the Xenopus data. The next circle represents proteins expressed with FC =/>2 (blue) or =/ 4 (pink). The Xenopus data contained a far higher number of proteins with these fold differences, especially in the transcription, cytoskeleton and signaling categories compared to the axolotl data. Progressing inward, the next four circles in Xenopus reflect the fold change difference (red = down regulation; green = up regulation; blue = no change) of proteins at 1 dpa, 5 dpa, 7 dpa, and 12 dpa, respectively. In the axolotl, three circles represent FC in protein expression at 1 dpa, 4 dpa, and 7dpa. The innermost circle represents the connections between the interacting proteins within the Xenopus and axolotl data. A comparison of these interactions indicates that the proteomic composition and protein-protein interactions are much more complex during formation of the fibroblastema in Xenopus.
|